Building Event Sourcing systems in Go today requires significant boilerplate code:
// Typical boilerplate you write today:typeEventStoreinterface{Append(ctxcontext.Context,streamIDstring,events[]Event)errorLoad(ctxcontext.Context,streamIDstring)([]Event,error)}typeEventstruct{IDstringTypestringData[]byteMetadatamap[string]stringTimestamptime.TimeVersionint64}// Then you implement for each database...// Then you build projections manually...// Then you handle concurrency...// Then you build read models...// Then you handle retries...// Then you build migrations...
Current Go Ecosystem Gaps
Gap
Impact
No unified library
Teams reinvent the wheel
Fragmented solutions
Combine 5+ libraries for full ES
Manual projections
Error-prone, time-consuming
No schema management
Manual migration scripts
Limited multi-tenancy
Custom implementation required
Poor developer UX
Steep learning curve
Why Event Sourcing?
Traditional CRUD: Event Sourcing:
┌─────────────────┐ ┌─────────────────┐
│ Current State │ │ Event 1 │
│ (overwritten) │ │ Event 2 │
└─────────────────┘ │ Event 3 │
│ ... │
│ Event N │
└─────────────────┘
│
┌──────▼──────┐
│ Rebuild to │
│ any state │
└─────────────┘
Event Sourcing Benefits
Complete Audit Trail: Every change is recorded
Temporal Queries: “What was the state on March 15th?”
Debug Production: Replay events locally
Event Replay: Fix bugs by reprocessing events
Decoupled Systems: Events enable loose coupling
go-mink’s Goals
Primary Goals
Zero Boilerplate: Write business logic, not infrastructure